首页    期刊浏览 2024年11月26日 星期二
登录注册

文章基本信息

  • 标题:Resilient optimal design of multi-family buildings in future climate scenarios
  • 本地全文:下载
  • 作者:Matteo Bilardo ; Maria Ferrara ; Enrico Fabrizio
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2019
  • 卷号:111
  • 页码:1-7
  • DOI:10.1051/e3sconf/201911106006
  • 出版社:EDP Sciences
  • 摘要:In Europe, the second recast of EPBD promotes long-term strategies to accelerate the path to nZEBs, fostering the cost-optimized building design already suggested in the EPBD first recast. Since the nZEB design is a complex optimization problem that is subjected to uncertainty in its boundary conditions (climate, technologies, market, ...), it is necessary to guarantee the resilience of the NZEB optimal design to possible variations of future scenarios, especially as regards the climate change. This work applies the new EdeSSOpt methodology (Energy Demand and Supply Simultaneous Optimization) developed by the Authors aiming at investigating the variation of the cost-optimized multi-family building design in different Italian future climate scenarios, therefore considering parameters related to the building envelope, energy systems and renewable energy sources. The method is implemented into the TRNSYS® (energy model), GenOpt (optimizer) and WeatherShift® (future climate scenario generator) tools. The resulting cost-optimal solutions in future scenarios are related to a lower global cost and a decreased total primary energy consumption. Beyond the future trends of such performance indexes, the fact that most of technical solutions associated with the optimal solutions have not changed with the studied climate scenarios, indicates a certain resilience of the optimal design variables facing climate change.
  • 其他摘要:In Europe, the second recast of EPBD promotes long-term strategies to accelerate the path to nZEBs, fostering the cost-optimized building design already suggested in the EPBD first recast. Since the nZEB design is a complex optimization problem that is subjected to uncertainty in its boundary conditions (climate, technologies, market, ...), it is necessary to guarantee the resilience of the NZEB optimal design to possible variations of future scenarios, especially as regards the climate change. This work applies the new EdeSSOpt methodology (Energy Demand and Supply Simultaneous Optimization) developed by the Authors aiming at investigating the variation of the cost-optimized multi-family building design in different Italian future climate scenarios, therefore considering parameters related to the building envelope, energy systems and renewable energy sources. The method is implemented into the TRNSYS® (energy model), GenOpt (optimizer) and WeatherShift® (future climate scenario generator) tools. The resulting cost-optimal solutions in future scenarios are related to a lower global cost and a decreased total primary energy consumption. Beyond the future trends of such performance indexes, the fact that most of technical solutions associated with the optimal solutions have not changed with the studied climate scenarios, indicates a certain resilience of the optimal design variables facing climate change.
国家哲学社会科学文献中心版权所有