首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Analysis of energy signatures and planning of heating and domestic hot water energy use in buildings in Norway
  • 本地全文:下载
  • 作者:Tymofii Tereshchenko ; Dmytro Ivanko ; Natasa Nord
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2019
  • 卷号:111
  • 页码:1-8
  • DOI:10.1051/e3sconf/201911106009
  • 出版社:EDP Sciences
  • 摘要:Widespread introduction of low energy buildings (LEBs), passive houses, and zero emission buildings (ZEBs) are national target in Norway. In order to achieve better energy performance in these types of buildings and successfully integrate them in energy system, reliable planning and prediction techniques for heat energy use are required. However, the issue of energy planning in LEBs currently remains challenging for district heating companies. This article proposed an improved methodology for planning and analysis of domestic hot water and heating energy use in LEBs based on energy signature method. The methodology was tested on a passive school in Oslo, Norway. In order to divide energy signature curve on temperature dependent and independent parts, it was proposed to use piecewise regression. Each of these parts were analyzed separately. The problem of dealing with outliers and selection of the factors that had impact of energy was considered. For temperature dependent part, the different methods of modelling were compared by statistical criteria. The investigation showed that linear multiple regression model resulted in better accuracy in the prediction than SVM, PLS, and LASSO models. In order to explain temperature independent part of energy signature the hourly profiles of energy use were developed.
  • 其他摘要:Widespread introduction of low energy buildings (LEBs), passive houses, and zero emission buildings (ZEBs) are national target in Norway. In order to achieve better energy performance in these types of buildings and successfully integrate them in energy system, reliable planning and prediction techniques for heat energy use are required. However, the issue of energy planning in LEBs currently remains challenging for district heating companies. This article proposed an improved methodology for planning and analysis of domestic hot water and heating energy use in LEBs based on energy signature method. The methodology was tested on a passive school in Oslo, Norway. In order to divide energy signature curve on temperature dependent and independent parts, it was proposed to use piecewise regression. Each of these parts were analyzed separately. The problem of dealing with outliers and selection of the factors that had impact of energy was considered. For temperature dependent part, the different methods of modelling were compared by statistical criteria. The investigation showed that linear multiple regression model resulted in better accuracy in the prediction than SVM, PLS, and LASSO models. In order to explain temperature independent part of energy signature the hourly profiles of energy use were developed.
国家哲学社会科学文献中心版权所有