首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:Initial crack effect on the strength of oblique cross sections of reinforced concrete beams strengthened with carbon fiber
  • 本地全文:下载
  • 作者:Alexandr Shilov ; Petr Polskoy ; Dmitriy Mailyan
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2019
  • 卷号:110
  • 页码:1-7
  • DOI:10.1051/e3sconf/201911001053
  • 出版社:EDP Sciences
  • 摘要:In the theory of reinforced concrete, the issue on strength of the oblique beam sections is more complicated than that on the standard sections, since it depends on many factors. The change of at least one of them leads to a significant change in the carrying capacity and in the structural damage pattern. This is due to the fact that at the operating level of the load, all conventional reinforced concrete structures work with cracks, which must be considered in the calculation. However, in the existing regulatory documents and public sources, this issue is not specified. This paper considers the effect of initial cracks on the strength of oblique cross sections of the reinforced concrete beams strengthened with carbon fiber. The experimental studies results obtained through the transverse force testing of forty-two prototypes made of heavy concrete of B30 design grade are presented. The test samples had initial oblique cracks of 0.6-0.9 mm width and were reinforced with three composite U stirrups from the fabric based on unidirectional carbon fibers in the shear span. Initial cracks in the beams were formed at three values of the shear span – 1.5h0, 2h0 and 2.5h0. The test data show the impact of initial cracks on the efficiency of composite reinforcement of oblique cross sections of the prototypes at various values of shear spans.
  • 其他摘要:In the theory of reinforced concrete, the issue on strength of the oblique beam sections is more complicated than that on the standard sections, since it depends on many factors. The change of at least one of them leads to a significant change in the carrying capacity and in the structural damage pattern. This is due to the fact that at the operating level of the load, all conventional reinforced concrete structures work with cracks, which must be considered in the calculation. However, in the existing regulatory documents and public sources, this issue is not specified. This paper considers the effect of initial cracks on the strength of oblique cross sections of the reinforced concrete beams strengthened with carbon fiber. The experimental studies results obtained through the transverse force testing of forty-two prototypes made of heavy concrete of B30 design grade are presented. The test samples had initial oblique cracks of 0.6-0.9 mm width and were reinforced with three composite U stirrups from the fabric based on unidirectional carbon fibers in the shear span. Initial cracks in the beams were formed at three values of the shear span – 1.5h0, 2h0 and 2.5h0. The test data show the impact of initial cracks on the efficiency of composite reinforcement of oblique cross sections of the prototypes at various values of shear spans.
国家哲学社会科学文献中心版权所有