首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Big data sets in construction
  • 本地全文:下载
  • 作者:Pavel Kagan
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2019
  • 卷号:110
  • 页码:1-7
  • DOI:10.1051/e3sconf/201911002007
  • 出版社:EDP Sciences
  • 摘要:The paper studies the processing of large information data arrays (Big Data) in construction. The issues of the applicability of the big data concept (Big Data) at various stages of the life cycle of buildings and structures are considered. Methods for data conversion for their further processing are proposed. The methods used in the analysis of "big data" allow working with unstructured data sets (Data Mining). An approach is considered, in which the analysis of arbitrary data can be reduced to text analysis, similar to the analysis of ordinary text messages. At the moment, it is important and interesting to isolate non-obvious links present in the analysed data. The advantage of using big data is that it is not necessary to advance hypotheses for testing. Hypotheses appear during data analysis. Dependence analysis is a basic approach when working with big data. The concept of an automatic big data analysis system is proposed. For data mining, text analysis algorithms should be used, and discriminant functions should be used for the main problem to be solved (data classification).
  • 其他摘要:The paper studies the processing of large information data arrays (Big Data) in construction. The issues of the applicability of the big data concept (Big Data) at various stages of the life cycle of buildings and structures are considered. Methods for data conversion for their further processing are proposed. The methods used in the analysis of "big data" allow working with unstructured data sets (Data Mining). An approach is considered, in which the analysis of arbitrary data can be reduced to text analysis, similar to the analysis of ordinary text messages. At the moment, it is important and interesting to isolate non-obvious links present in the analysed data. The advantage of using big data is that it is not necessary to advance hypotheses for testing. Hypotheses appear during data analysis. Dependence analysis is a basic approach when working with big data. The concept of an automatic big data analysis system is proposed. For data mining, text analysis algorithms should be used, and discriminant functions should be used for the main problem to be solved (data classification).
国家哲学社会科学文献中心版权所有