首页    期刊浏览 2025年12月04日 星期四
登录注册

文章基本信息

  • 标题:Microfluidic measurement of the dissolution rate of gypsum in water using the reactive infiltration-instability
  • 本地全文:下载
  • 作者:Florian Osselin ; Pawel Kondratiuk ; Olgierd Cybulski
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2019
  • 卷号:98
  • 页码:1-5
  • DOI:10.1051/e3sconf/20199804010
  • 出版社:EDP Sciences
  • 摘要:We present an original method for measuring the intrinsic dissolution rate of gypsum. We use a simple microfluidic setup, with a gypsum block inserted between two polycarbonate plates, which is dissolved by water. By changing the flow rate and the distance between the plates, we can scan a wide range of Péclet and Damköhler numbers, characterizing the relative magnitude of advection, diffusion and reaction in the system. We find the dissolution to be unstable, with a formation of a characteristic fingering pattern. The dissolution rate can then be calculated from the initial wavelength of this pattern. Alternatively, it can also be estimated from the time it takes for the gypsum chip to get completely dissolved near the inlet channel. The method presented here is general and can be used to assess the dissolution rates of other minerals.
  • 其他摘要:We present an original method for measuring the intrinsic dissolution rate of gypsum. We use a simple microfluidic setup, with a gypsum block inserted between two polycarbonate plates, which is dissolved by water. By changing the flow rate and the distance between the plates, we can scan a wide range of Péclet and Damköhler numbers, characterizing the relative magnitude of advection, diffusion and reaction in the system. We find the dissolution to be unstable, with a formation of a characteristic fingering pattern. The dissolution rate can then be calculated from the initial wavelength of this pattern. Alternatively, it can also be estimated from the time it takes for the gypsum chip to get completely dissolved near the inlet channel. The method presented here is general and can be used to assess the dissolution rates of other minerals.
国家哲学社会科学文献中心版权所有