首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Comparison of Sea Surface Variation Derived from Global Navigation Satellite System (GNSS) and Co-tidal in Java Sea
  • 本地全文:下载
  • 作者:Danar Guruh Pratomo ; Khomsin ; Khariz Syaputra
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2019
  • 卷号:94
  • 页码:1-6
  • DOI:10.1051/e3sconf/20199401007
  • 出版社:EDP Sciences
  • 摘要:Tide represents the vertical variation of sea surface. This parameter plays important rules in bathymetric survey. The conventional method to observe the sea surface variation is by using tide pole. Nowdays, a Global Navigation Satellite System (GNSS) can be used as a means to measure the variation of sea surface as it provides high accuracy coordinates. In this research, the vertical component of GNSS was utilized to analyze the variation of sea surface. The distance between tidal stations and the survey area can be a constrain to the depth reduction because its tidal zoning. The traditional tidal zoning is a discrete model. This can be minimalized using a co-tidal chart. In this research, the vertical variation of sea surface from GNSS and co-tidal chart approachs were examined and compared to the conventional method. The comparative analysis was performed with Root Mean Square Error (RMSE). The maximum and minimum RMSE during 3 days period between the GNSS and conventional approach are 0.246 m and 0.051 m, respectively. Whereas, the maximum and minimum RMSE between the co-tidal chart model and the conventional approach at the same time are 0.286 m and 0.109 m.
  • 其他摘要:Tide represents the vertical variation of sea surface. This parameter plays important rules in bathymetric survey. The conventional method to observe the sea surface variation is by using tide pole. Nowdays, a Global Navigation Satellite System (GNSS) can be used as a means to measure the variation of sea surface as it provides high accuracy coordinates. In this research, the vertical component of GNSS was utilized to analyze the variation of sea surface. The distance between tidal stations and the survey area can be a constrain to the depth reduction because its tidal zoning. The traditional tidal zoning is a discrete model. This can be minimalized using a co-tidal chart. In this research, the vertical variation of sea surface from GNSS and co-tidal chart approachs were examined and compared to the conventional method. The comparative analysis was performed with Root Mean Square Error (RMSE). The maximum and minimum RMSE during 3 days period between the GNSS and conventional approach are 0.246 m and 0.051 m, respectively. Whereas, the maximum and minimum RMSE between the co-tidal chart model and the conventional approach at the same time are 0.286 m and 0.109 m.
国家哲学社会科学文献中心版权所有