首页    期刊浏览 2024年09月16日 星期一
登录注册

文章基本信息

  • 标题:Robust Positioning Performance in Indoor Environments
  • 本地全文:下载
  • 作者:Allison Kealy ; Guenther Retscher ; Yan Li
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2019
  • 卷号:94
  • 页码:1-10
  • DOI:10.1051/e3sconf/20199402001
  • 出版社:EDP Sciences
  • 摘要:Increasingly, safety and liability critical applications require GNSS-like positioning metrics in environments where GNSS cannot work. Indoor navigation for the vision impaired and other mobility restricted individuals, emergency responders and asset tracking in buildings demand levels of positioning accuracy and integrity that cannot be satisfied by current indoor positioning technologies and techniques. This paper presents the challenges facing positioning technologies for indoor positioning and presents innovative algorithms and approaches that aim to enhance performance in these difficult environments. The overall aim is to achieve GNSS-like performance in terms of autonomous, global, infrastructure free, portable and cost efficient. Preliminary results from a real-world experimental campaign conducted as part of the joint FIG Working Group 5.5 and IAG Sub-commission 4.1 on multi-sensor systems, demonstrate performance improvements based on differential Wi-Fi (DWi-Fi) and cooperative positioning techniques. The techniques, experimental schema and initial results will be fully documented in this paper.
  • 其他摘要:Increasingly, safety and liability critical applications require GNSS-like positioning metrics in environments where GNSS cannot work. Indoor navigation for the vision impaired and other mobility restricted individuals, emergency responders and asset tracking in buildings demand levels of positioning accuracy and integrity that cannot be satisfied by current indoor positioning technologies and techniques. This paper presents the challenges facing positioning technologies for indoor positioning and presents innovative algorithms and approaches that aim to enhance performance in these difficult environments. The overall aim is to achieve GNSS-like performance in terms of autonomous, global, infrastructure free, portable and cost efficient. Preliminary results from a real-world experimental campaign conducted as part of the joint FIG Working Group 5.5 and IAG Sub-commission 4.1 on multi-sensor systems, demonstrate performance improvements based on differential Wi-Fi (DWi-Fi) and cooperative positioning techniques. The techniques, experimental schema and initial results will be fully documented in this paper.
国家哲学社会科学文献中心版权所有