摘要:Various methods have been studied to mitigate the influence of multipath signals, representative methods focused the correlator structure are the Narrow Correlator and the Multipath Elimination Technique (MET). It is known that the MET has better performance than Narrow Correlator but it requires more complexity. In this paper, we propose a technique that has similar performance to the MET and it uses only three correlators like the Narrow Correlator. This technique switches the chip spacing of the correlators for each Predetection Integration Time (PIT) and applies it to the MET. For the performance analysis, we implemented a software platform and compared the code tracking error of the proposed technique with that of the Narrow Correlator and the MET.
其他摘要:Various methods have been studied to mitigate the influence of multipath signals, representative methods focused the correlator structure are the Narrow Correlator and the Multipath Elimination Technique (MET). It is known that the MET has better performance than Narrow Correlator but it requires more complexity. In this paper, we propose a technique that has similar performance to the MET and it uses only three correlators like the Narrow Correlator. This technique switches the chip spacing of the correlators for each Predetection Integration Time (PIT) and applies it to the MET. For the performance analysis, we implemented a software platform and compared the code tracking error of the proposed technique with that of the Narrow Correlator and the MET.