摘要:Backfill soils in many geotechnical applications are compacted and are likely to be in an unsaturated state during operation. In earthquake-prone areas, seismic compression of unsaturated backfill soils should be understood as small settlements may have significant impacts on the performance of overlying infrastructure like bridge decks, roadways, or railways. Accordingly, the goal of this paper is to describe the results from a series of constant suction, drained, cyclic simple shear tests on unsaturated sands subjected to a range of shear strain amplitudes. A new cyclic simple shear apparatus was developed that involves control of the matric suction and monitoring of changes in degree of saturation using the hanging column approach along with monitoring of the matric suction using an embedded tensiometer.
其他摘要:Backfill soils in many geotechnical applications are compacted and are likely to be in an unsaturated state during operation. In earthquake-prone areas, seismic compression of unsaturated backfill soils should be understood as small settlements may have significant impacts on the performance of overlying infrastructure like bridge decks, roadways, or railways. Accordingly, the goal of this paper is to describe the results from a series of constant suction, drained, cyclic simple shear tests on unsaturated sands subjected to a range of shear strain amplitudes. A new cyclic simple shear apparatus was developed that involves control of the matric suction and monitoring of changes in degree of saturation using the hanging column approach along with monitoring of the matric suction using an embedded tensiometer.