首页    期刊浏览 2024年12月12日 星期四
登录注册

文章基本信息

  • 标题:Dynamic calculation of nonlinear oscillations of viscoelastic orthotropic plate with a concentrated mass
  • 本地全文:下载
  • 作者:Dadakhan Khodzhaev
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2019
  • 卷号:91
  • 页码:1-9
  • DOI:10.1051/e3sconf/20199102045
  • 出版社:EDP Sciences
  • 摘要:Plates, panels and shells made of composite material with fixed objects in the form of an additional mass have found a wide use due to their viscoelastic and strength properties. An analysis of their dynamic behavior indicates a significant effect of inhomogeneity of an associated mass type on their strength. The problem of oscillations of a viscoelastic orthotropic rectangular plate with an associated mass is considered according to the Kirchhoff-Love hypothesis in a geometrically nonlinear statement. This problem is reduced to solving the systems of nonlinear integro-differential equations with singular relaxation kernels, solved by the Bubnov-Galerkin method in combination with a numerical method based on the use of quadrature formulas. The numerical values of the approximate solution have been calculated in the Delphi programming environment. At wide range of changes in physicomechanical and geometrical parameters, the behavior of the plate has been studied. The effect of viscoelastic and inhomogeneous material properties, concentrated mass and their location on the oscillatory process of a rectangular plate is shown.
  • 其他摘要:Plates, panels and shells made of composite material with fixed objects in the form of an additional mass have found a wide use due to their viscoelastic and strength properties. An analysis of their dynamic behavior indicates a significant effect of inhomogeneity of an associated mass type on their strength. The problem of oscillations of a viscoelastic orthotropic rectangular plate with an associated mass is considered according to the Kirchhoff-Love hypothesis in a geometrically nonlinear statement. This problem is reduced to solving the systems of nonlinear integro-differential equations with singular relaxation kernels, solved by the Bubnov-Galerkin method in combination with a numerical method based on the use of quadrature formulas. The numerical values of the approximate solution have been calculated in the Delphi programming environment. At wide range of changes in physicomechanical and geometrical parameters, the behavior of the plate has been studied. The effect of viscoelastic and inhomogeneous material properties, concentrated mass and their location on the oscillatory process of a rectangular plate is shown.
国家哲学社会科学文献中心版权所有