首页    期刊浏览 2025年02月19日 星期三
登录注册

文章基本信息

  • 标题:Obtaining High Quality SCAL Data: Combining Different Measurement Techniques, Saturation Monitoring, Numerical Interpretation and Continuous Monitoring of Experimental Data
  • 本地全文:下载
  • 作者:Yingxue Wang ; Shehadeh K. Masalmeh
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2019
  • 卷号:89
  • 页码:1-9
  • DOI:10.1051/e3sconf/20198902007
  • 出版社:EDP Sciences
  • 摘要:SCAL parameters (i.e., Relative Permeability and Capillary Pressure curves) are key inputs to understand and predict reservoir behavior in all phases of development. Techniques to measure relative permeability and capillary pressure have been well established and applied to a wide variety of core samples both from sandstone and carbonate reservoirs. On the other hand, we frequently encounter quality compromised data due to challenges in experimental procedures, lack of understanding of measurement techniques, and poor quality of raw data. As a result, relative permeability is often viewed as a parameter with large uncertainties and a fitting parameter in history matching. A special core analysis program was recently carried out on selected core samples from a deep-water sandstone reservoir in the Gulf of Mexico. In this frontier, relative permeability has been ranked among the top subsurface uncertainties. It greatly impacts the production forecast and field development plan. However, due to the high temperature, high salinity and fluid compatibility issues, the core measurements faced very specific challenges and a good relative permeability dataset has not been obtained in the past for this area. In this work, we demonstrate that a quality set of relative permeability data can be obtained through close collaboration across disciplines, a properly designed protocol, adequate engagement with the laboratory, timely QA/QC of experimental raw data, and appropriate interpretation incorporating numerical simulations. Well-defined and constrained relative permeability curve shave been derived with the combination of steady state and centrifuge techniques. The average trend can be described by a residual oil saturation of 22%, end-point relative permeabilities of 0.6 and 0.2 to oil and water, respectively and Corey exponents between 2 and 3.
  • 其他摘要:SCAL parameters (i.e., Relative Permeability and Capillary Pressure curves) are key inputs to understand and predict reservoir behavior in all phases of development. Techniques to measure relative permeability and capillary pressure have been well established and applied to a wide variety of core samples both from sandstone and carbonate reservoirs. On the other hand, we frequently encounter quality compromised data due to challenges in experimental procedures, lack of understanding of measurement techniques, and poor quality of raw data. As a result, relative permeability is often viewed as a parameter with large uncertainties and a fitting parameter in history matching. A special core analysis program was recently carried out on selected core samples from a deep-water sandstone reservoir in the Gulf of Mexico. In this frontier, relative permeability has been ranked among the top subsurface uncertainties. It greatly impacts the production forecast and field development plan. However, due to the high temperature, high salinity and fluid compatibility issues, the core measurements faced very specific challenges and a good relative permeability dataset has not been obtained in the past for this area. In this work, we demonstrate that a quality set of relative permeability data can be obtained through close collaboration across disciplines, a properly designed protocol, adequate engagement with the laboratory, timely QA/QC of experimental raw data, and appropriate interpretation incorporating numerical simulations. Well-defined and constrained relative permeability curve shave been derived with the combination of steady state and centrifuge techniques. The average trend can be described by a residual oil saturation of 22%, end-point relative permeabilities of 0.6 and 0.2 to oil and water, respectively and Corey exponents between 2 and 3.
国家哲学社会科学文献中心版权所有