首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Optimal Selection of Gear Ratio for Hybrid Electric Vehicles Using Modern Meta-Heuristics Search Algorithm
  • 本地全文:下载
  • 作者:Vikram Kumar Kamboj ; Sobhit Saxena ; Kamalpreet Sandhu
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2019
  • 卷号:87
  • 页码:1-9
  • DOI:10.1051/e3sconf/20198701006
  • 出版社:EDP Sciences
  • 摘要:Gear Train Design problem is most important design problem for machine tools manufacturers. Recent work on gear train improvement has been bound towards multi-shaft gear trains of the speed-change kind, where major focus is to maximize the range of operating speeds and to minimize the number of gears and spindles. In the proposed research, a hybrid meta-heuristic search algorithm is presented to design and optimize multi-spindle gear trains problem. The objective of the research is to optimize gear trains on the basis of minimum overall centre distance, minimum overall size, minimum gear volume, or other desirable criteria, such as maximum contact or overlap ratios. The proposed hybrid meta-heuristic search algorithm is inspired by canis lupus family of grey wolves and exploitation capability of existing grey wolf optimizer is further enhanced by pattern search algorithm, which is a derivative-free, direct search optimization algorithm suitable for non-differential, discontinuous search space and does not require gradient for numerical optimization problem and have good exploitation capability in local search space. The effectiveness of the proposed algorithm has been tested on various mechanical and civil design problem including gear train design problem, which includes four different gear and experimental results are compared with others recently reported heuristics and meta-heuristics search algorithm. It has been found that the proposed algorithm indorses its effectiveness in the field of nature inspired meta heuristics algorithms for engineering design problems for hybrid electric vehicles.
  • 其他摘要:Gear Train Design problem is most important design problem for machine tools manufacturers. Recent w ork on gear train improvement has been bound towards multi-shaft gear trains of the speed-change kind, where major focus is to maximize the range of operating speeds and to minimize the number of gears and spindles. In the proposed research, a hybrid meta-heuristic search algorithm is presented to design and optimize multi-spindle gear trains problem. The objective of the research is to optimize gear trains on the basis of minimum overall centre distance, minimum overall size, minimum gear volume, or other desirable criteria, such as maximum contact or overlap ratios. The proposed hybrid meta-heuristic search algorithm is inspired by canis lupus family of grey wolves and exploitation capability of existing grey wolf optimizer is further enhanced by pattern search algorithm, which is a derivative-free, direct search optimization algorithm suitable for non-differential, discontinuous search space and does not require gradient for numerical optimization problem and have good exploitation capability in local search space. The effectiveness of the proposed algorithm has been tested on various mechanical and civil design problem including gear train design problem, which includes four different gear and experimental results are compared with others recently reported heuristics and meta-heuristics search algorithm. It has been found that the proposed algorithm indorses its effectiveness in the field of nature inspired meta heuristics algorithms for engineering design problems for hybrid electric vehicles.
  • 其他关键词:Engineering Design Problems ; Gear Train Design Problem ; Hybrid Electric Vehicles ; Meta-Heuristics
国家哲学社会科学文献中心版权所有