摘要:The misfire phenomenon is particularly unfavourable in aircraft engines because it affects the stability and reliability of work. This paper presents the algorithm for detecting ignition failure in a radial aircraft engine. The Crankshaft Velocity Fluctuation method was applied, which consists in analysing changes in the crankshaft speed signal as a function of time. A zero-dimensional model of the aircraft engine was developed in order to perform the research. The validation of the model was performed using the results from the test bench. The model was subjected to simulation tests in fixed operating conditions. Based on the engine speed signal obtained as a result of the simulation, the normalized second derivative of the signal was determined based on the adopted algorithm. On the basis of this derivative, a criterion was defined to assess the occurrence of the misfire phenomenon. The results of the calculations can be compared in future with the results of the real engine tests.
其他摘要:The misfire phenomenon is particularly unfavourable in aircraft engines because it affects the stability and reliability of work. This paper presents the algorithm for detecting ignition failure in a radial aircraft engine. The Crankshaft Velocity Fluctuation method was applied, which consists in analysing changes in the crankshaft speed signal as a function of time. A zero-dimensional model of the aircraft engine was developed in order to perform the research. The validation of the model was performed using the results from the test bench. The model was subjected to simulation tests in fixed operating conditions. Based on the engine speed signal obtained as a result of the simulation, the normalized second derivative of the signal was determined based on the adopted algorithm. On the basis of this derivative, a criterion was defined to assess the occurrence of the misfire phenomenon. The results of the calculations can be compared in future with the results of the real engine tests.