摘要:It is necessary to characterise air-conditioning airflow in omanuscriprder to optimize hospital Indoor Environment Quality in high-performance operating theatres, and also reduce the risk of nosocomial infection due to pathogen contamination. The aim of this article is to study the prevalence of optimal healthy conditions from controlled air flow quality in hospital facilities, and to minimize energy consumption. To this purpose, the indoor air movement was modelled by Computational Fluid Dynamics technology. The optimal results showed that it is necessary to drive ultra-clean air ranging between 0.25 m/s and 0.40 m/s, values which are adequate to perform efficient sweeping and cleaning of the air near the patient, maintaining unidirectional air flow permanently as the air passes through the surgical field. These speeds must be taken into account as calculation parameters in new hospital facility projects, and as control parameters for the existing operating theatres.
其他摘要:It is necessary to characterise air-conditioning airflow in omanuscriprder to optimize hospital Indoor Environment Quality in high-performance operating theatres, and also reduce the risk of nosocomial infection due to pathogen contamination. The aim of this article is to study the prevalence of optimal healthy conditions from controlled air flow quality in hospital facilities, and to minimize energy consumption. To this purpose, the indoor air movement was modelled by Computational Fluid Dynamics technology. The optimal results showed that it is necessary to drive ultra-clean air ranging between 0.25 m/s and 0.40 m/s, values which are adequate to perform efficient sweeping and cleaning of the air near the patient, maintaining unidirectional air flow permanently as the air passes through the surgical field. These speeds must be taken into account as calculation parameters in new hospital facility projects, and as control parameters for the existing operating theatres.