摘要:Computational Fluid dynamics (CFD) is the science that evolves rapidly in numerical solving of fluid motion equations to produce quantitative results and analyses of phenomena encountered in the fluid flow. When properly used, CFD is often ideal for parameterization studies or physical significance investigations of flow that would otherwise be impossible to replicate through theoretical or experimental tests. The aim of this paper is the study of the turbulent airflow and how the vortices formed in turbulent airflow are influenced by the evolution of the hydraulic characteristics of the fluid flow. Unsteady numerical simulation were performed using Reynolds Average Navier-Stokes (RANS) turbulence model adapted to conventional flow into a pipe with variable section which was implemented in the ANSYS FLUENT expert software.
其他摘要:Computational Fluid dynamics (CFD) is the science that evolves rapidly in numerical solving of fluid motion equations to produce quantitative results and analyses of phenomena encountered in the fluid flow. When properly used, CFD is often ideal for parameterization studies or physical significance investigations of flow that would otherwise be impossible to replicate through theoretical or experimental tests. The aim of this paper is the study of the turbulent airflow and how the vortices formed in turbulent airflow are influenced by the evolution of the hydraulic characteristics of the fluid flow. Unsteady numerical simulation were performed using Reynolds Average Navier-Stokes (RANS) turbulence model adapted to conventional flow into a pipe with variable section which was implemented in the ANSYS FLUENT expert software.