首页    期刊浏览 2025年05月26日 星期一
登录注册

文章基本信息

  • 标题:Mechanical and thermal characterization of a beet pulp-starch composite for building applications
  • 本地全文:下载
  • 作者:Hamzé Karpaky ; Chadi Maalouf ; Christophe Bliard
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2019
  • 卷号:85
  • 页码:1-8
  • DOI:10.1051/e3sconf/20198508005
  • 出版社:EDP Sciences
  • 摘要:This work shows the making of a new bio-based material for building insulation from sugar beet pulp and potato starch. The material is both lightweight and ecofriendly. The influence of starch/ sugar beet pulp ratio (S/BP) is studied. Four binder mass dosages are considered, 10, 20, 30 and 40% (relative to the beet pulp). Samples are characterized in terms of absolute and bulk density, compressive and flexural strength, as well as thermal properties (thermal conductivity and thermal inertia). The compressive strength increases linearly with the S/BP mass ratio to reach 0.52 MPa and the compressive strain is 30%. The thermal conductivity is to around 0.070 W/m. K. The results obtained shows that increasing starch amount tends to decrease composite porosity but increases thermal conductivity and mechanical properties. Depending on the starch content, beet pulp composites have a good thermal and can be used as building materials.
  • 其他摘要:This work shows the making of a new bio-based material for building insulation from sugar beet pulp and potato starch. The material is both lightweight and ecofriendly. The influence of starch/ sugar beet pulp ratio (S/BP) is studied. Four binder mass dosages are considered, 10, 20, 30 and 40% (relative to the beet pulp). Samples are characterized in terms of absolute and bulk density, compressive and flexural strength, as well as thermal properties (thermal conductivity and thermal inertia). The compressive strength increases linearly with the S/BP mass ratio to reach 0.52 MPa and the compressive strain is 30%. The thermal conductivity is to around 0.070 W/m. K. The results obtained shows that increasing starch amount tends to decrease composite porosity but increases thermal conductivity and mechanical properties. Depending on the starch content, beet pulp composites have a good thermal and can be used as building materials.
国家哲学社会科学文献中心版权所有