首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Effect of Components Thickness on Heat and Mass Transfer Phenomena in Single Cell of PEFC Operated at High Temperature
  • 本地全文:下载
  • 作者:Akira Nishimura ; Satoru Kamiya ; Tatsuya Okado
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2019
  • 卷号:83
  • 页码:1-11
  • DOI:10.1051/e3sconf/20198301007
  • 出版社:EDP Sciences
  • 摘要:Since the heat transfer characteristics in Polymer Electrolyte Fuel Cell (PEFC) influences its power generation performance, this study clarifies the temperature characteristics to in-plane direction in single PEFC. In addition, since we expect the heat and mass transfer as well as power generation characteristic are enhanced by decreasing PEM and GDL’s thicknesses, it is effective to investigate the impact of components thickness on them under high temperature operation. This study aims to clarify how to influence PEM and GDL’s thicknesses on not only heat and mass transfer characteristics but also power generation characteristic under high temperature, e.g., 90 °. The present study measured temperature distributions to in-plane direction on cathode separator back of cell by thermograph with power generation changing initial operation temperature as well as relative humidity of inflow gases. As a result, the increase in generated power and the even temperature distribution were obtained due to the decrease in GDL’s thickness. Since the moisture transfer was promoted with decreasing the thickness of PEM, the power generation performance was improved. It was clarified that the impact of GDL’s thickness was larger than that of PEM’s thickness.
  • 其他摘要:Since the heat transfer characteristics in Polymer Electrolyte Fuel Cell (PEFC) influences its power generation performance, this study clarifies the temperature characteristics to in-plane direction in single PEFC. In addition, since we expect the heat and mass transfer as well as power generation characteristic are enhanced by decreasing PEM and GDL’s thicknesses, it is effective to investigate the impact of components thickness on them under high temperature operation. This study aims to clarify how to influence PEM and GDL’s thicknesses on not only heat and mass transfer characteristics but also power generation characteristic under high temperature, e.g., 90 °. The present study measured temperature distributions to in-plane direction on cathode separator back of cell by thermograph with power generation changing initial operation temperature as well as relative humidity of inflow gases. As a result, the increase in generated power and the even temperature distribution were obtained due to the decrease in GDL’s thickness. Since the moisture transfer was promoted with decreasing the thickness of PEM, the power generation performance was improved. It was clarified that the impact of GDL’s thickness was larger than that of PEM’s thickness.
  • 其他关键词:PEFC ; Thermal management ; Measurement by thermograph ; High temperature target ; Components thickness
国家哲学社会科学文献中心版权所有