摘要:Due to degenarative disorder of articular cartilage, hip joint need to be replaced with an artificial hip joint. Currently, the modular design of artificial hip joint become popular in the procedure because the modular type’s provide flexibility for the surgeon. But, there were several report about the failure of modular version, and the failure was likely to happen on the neck part. The main focus of this research was to ensure the design safety of present artificial hip joint using FEM (Finite Element Method). The present artificial hip joint was loaded with force that occurred due to jump activity, and there were 3 type of materials that used in this research (Titanium Alloy (Ti-6Al-4V), Cobalt - Chrome alloy, and stainless steel (SS) 316L). The result is maximum stress that occurred on Ti-6Al-4V, Co-Cr alloy, and SS316L were 296.13 MPa, 294.02 MPa, and 294.51 MPa, respectively. The Ti-6Al-4V perform the best among the others with the safety factor of 2.7.
其他摘要:Due to degenarative disorder of articular cartilage, hip joint need to be replaced with an artificial hip joint. Currently, the modular design of artificial hip joint become popular in the procedure because the modular type’s provide flexibility for the surgeon. But, there were several report about the failure of modular version, and the failure was likely to happen on the neck part. The main focus of this research was to ensure the design safety of present artificial hip joint using FEM (Finite Element Method). The present artificial hip joint was loaded with force that occurred due to jump activity, and there were 3 type of materials that used in this research (Titanium Alloy (Ti-6Al-4V), Cobalt - Chrome alloy, and stainless steel (SS) 316L). The result is maximum stress that occurred on Ti-6Al-4V, Co-Cr alloy, and SS316L were 296.13 MPa, 294.02 MPa, and 294.51 MPa, respectively. The Ti-6Al-4V perform the best among the others with the safety factor of 2.7.