首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Verification of Randomized Consensus Algorithms Under Round-Rigid Adversaries
  • 本地全文:下载
  • 作者:Nathalie Bertrand ; Igor Konnov ; Marijana Lazic
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2019
  • 卷号:140
  • 页码:1-15
  • DOI:10.4230/LIPIcs.CONCUR.2019.33
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Randomized fault-tolerant distributed algorithms pose a number of challenges for automated verification: (i) parameterization in the number of processes and faults, (ii) randomized choices and probabilistic properties, and (iii) an unbounded number of asynchronous rounds. This combination makes verification hard. Challenge (i) was recently addressed in the framework of threshold automata. We extend threshold automata to model randomized consensus algorithms that perform an unbounded number of asynchronous rounds. For non-probabilistic properties, we show that it is necessary and sufficient to verify these properties under round-rigid schedules, that is, schedules where processes enter round r only after all processes finished round r-1. For almost-sure termination, we analyze these algorithms under round-rigid adversaries, that is, fair adversaries that only generate round-rigid schedules. This allows us to do compositional and inductive reasoning that reduces verification of the asynchronous multi-round algorithms to model checking of a one-round threshold automaton. We apply this framework and automatically verify the following classic algorithms: Ben-Or's and Bracha's seminal consensus algorithms for crashes and Byzantine faults, 2-set agreement for crash faults, and RS-Bosco for the Byzantine case.
  • 关键词:threshold automata; counter systems; parameterized verification; randomized distributed algorithms; Byzantine faults
国家哲学社会科学文献中心版权所有