首页    期刊浏览 2024年10月06日 星期日
登录注册

文章基本信息

  • 标题:Popular Matchings: Good, Bad, and Mixed (Invited Talk)
  • 本地全文:下载
  • 作者:Telikepalli Kavitha
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2019
  • 卷号:138
  • 页码:1-1
  • DOI:10.4230/LIPIcs.MFCS.2019.4
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We consider the landscape of popular matchings in a bipartite graph G where every vertex has strict preferences over its neighbors. This is a very well-studied model in two-sided matching markets. A matching M is popular if it does not lose a head-to-head election against any matching, where each vertex casts a vote for the matching where it gets a better assignment. Roughly speaking, a popular matching is one such that there is no matching where more vertices are happier. The notion of popularity is more relaxed than stability: a classical notion studied for the last several decades. Popular matchings always exist in G since stable matchings always exist in a bipartite graph and every stable matching is popular. Algorithmically speaking, the landscape of popular matching seems to have only a few bright spots. Every stable matching is a min-size popular matching and there are also simple linear time algorithms for computing a max-size popular matching and for the popular edge problem. All these algorithms reduce the popular matching problem to an appropriate question in stable matchings and solve the corresponding stable matching problem. We now know NP-hardness results for many popular matching problems. These include the min-cost/max-weight popular matching problem and the problem of deciding if G admits a popular matching that is neither a min-size nor a max-size popular matching. For non-bipartite graphs, it is NP-hard to even decide if a popular matching exists or not. A mixed matching is a probability distribution or a lottery over matchings. A popular mixed matching is one that never loses a head-to-head election against any mixed matching. As an allocation mechanism, a popular mixed matching has several nice properties. Moreover, finding a max-weight or min-cost popular mixed matching in G is easy (by solving a linear program). Interestingly, there is always an optimal popular mixed matching Pi with a simple structure: Pi = {(M_0,1/2),(M_1,1/2)} where M_0 and M_1 are matchings in G. Popular mixed matchings always exist in non-bipartite graphs as well and can be computed in polynomial time.
  • 关键词:Matchings under preferences; Algorithms; NP-Hardness
国家哲学社会科学文献中心版权所有