首页    期刊浏览 2024年11月26日 星期二
登录注册

文章基本信息

  • 标题:Semicomputable Points in Euclidean Spaces
  • 本地全文:下载
  • 作者:Mathieu Hoyrup ; Donald M. Stull
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2019
  • 卷号:138
  • 页码:1-13
  • DOI:10.4230/LIPIcs.MFCS.2019.48
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We introduce the notion of a semicomputable point in R^n, defined as a point having left-c.e. projections. We study the range of such a point, which is the set of directions on which its projections are left-c.e., and is a convex cone. We provide a thorough study of these notions, proving along the way new results on the computability of convex sets. We prove realization results, by identifying computability properties of convex cones that make them ranges of semicomputable points. We give two applications of the theory. The first one provides a better understanding of the Solovay derivatives. The second one is the investigation of left-c.e. quadratic polynomials. We show that this is, in fact, a particular case of the general theory of semicomputable points.
  • 关键词:Semicomputable point; Left-c.e. real; Convex cone; Solovay reducibility; Genericity
国家哲学社会科学文献中心版权所有