首页    期刊浏览 2024年11月07日 星期四
登录注册

文章基本信息

  • 标题:Bounded-Depth Frege Complexity of Tseitin Formulas for All Graphs
  • 本地全文:下载
  • 作者:Nicola Galesi ; Dmitry Itsykson ; Artur Riazanov
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2019
  • 卷号:138
  • 页码:1-15
  • DOI:10.4230/LIPIcs.MFCS.2019.49
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We prove that there is a constant K such that Tseitin formulas for an undirected graph G requires proofs of size 2^{tw(G)^{Omega(1/d)}} in depth-d Frege systems for d<(K log n)/(log log n), where tw(G) is the treewidth of G. This extends Håstad recent lower bound for the grid graph to any graph. Furthermore, we prove tightness of our bound up to a multiplicative constant in the top exponent. Namely, we show that if a Tseitin formula for a graph G has size s, then for all large enough d, it has a depth-d Frege proof of size 2^{tw(G)^{O(1/d)}} poly(s). Through this result we settle the question posed by M. Alekhnovich and A. Razborov of showing that the class of Tseitin formulas is quasi-automatizable for resolution.
  • 关键词:Tseitin formula; treewidth; AC0-Frege
国家哲学社会科学文献中心版权所有