首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:Almost Optimal Distribution-Free Junta Testing
  • 本地全文:下载
  • 作者:Nader H. Bshouty
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2019
  • 卷号:137
  • 页码:1-13
  • DOI:10.4230/LIPIcs.CCC.2019.2
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We consider the problem of testing whether an unknown n-variable Boolean function is a k-junta in the distribution-free property testing model, where the distance between functions is measured with respect to an arbitrary and unknown probability distribution over {0,1}^n. Chen, Liu, Servedio, Sheng and Xie [Zhengyang Liu et al., 2018] showed that the distribution-free k-junta testing can be performed, with one-sided error, by an adaptive algorithm that makes O~(k^2)/epsilon queries. In this paper, we give a simple two-sided error adaptive algorithm that makes O~(k/epsilon) queries.
  • 关键词:Distribution-free property testing; k-Junta
国家哲学社会科学文献中心版权所有