首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Sherali - Adams Strikes Back
  • 本地全文:下载
  • 作者:Ryan O'Donnell ; Tselil Schramm
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2019
  • 卷号:137
  • 页码:1-30
  • DOI:10.4230/LIPIcs.CCC.2019.8
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Let G be any n-vertex graph whose random walk matrix has its nontrivial eigenvalues bounded in magnitude by 1/sqrt{Delta} (for example, a random graph G of average degree Theta(Delta) typically has this property). We show that the exp(c (log n)/(log Delta))-round Sherali - Adams linear programming hierarchy certifies that the maximum cut in such a G is at most 50.1 % (in fact, at most 1/2 + 2^{-Omega(c)}). For example, in random graphs with n^{1.01} edges, O(1) rounds suffice; in random graphs with n * polylog(n) edges, n^{O(1/log log n)} = n^{o(1)} rounds suffice. Our results stand in contrast to the conventional beliefs that linear programming hierarchies perform poorly for max-cut and other CSPs, and that eigenvalue/SDP methods are needed for effective refutation. Indeed, our results imply that constant-round Sherali - Adams can strongly refute random Boolean k-CSP instances with n^{ceil[k/2] + delta} constraints; previously this had only been done with spectral algorithms or the SOS SDP hierarchy.
  • 关键词:Linear programming; Sherali; Adams; max-cut; graph eigenvalues; Sum-of-Squares
国家哲学社会科学文献中心版权所有