首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Optimal Short-Circuit Resilient Formulas
  • 本地全文:下载
  • 作者:Mark Braverman ; Klim Efremenko ; Ran Gelles
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2019
  • 卷号:137
  • 页码:1-22
  • DOI:10.4230/LIPIcs.CCC.2019.10
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We consider fault-tolerant boolean formulas in which the output of a faulty gate is short-circuited to one of the gate's inputs. A recent result by Kalai et al. [FOCS 2012] converts any boolean formula into a resilient formula of polynomial size that works correctly if less than a fraction 1/6 of the gates (on every input-to-output path) are faulty. We improve the result of Kalai et al., and show how to efficiently fortify any boolean formula against a fraction 1/5 of short-circuit gates per path, with only a polynomial blowup in size. We additionally show that it is impossible to obtain formulas with higher resilience and sub-exponential growth in size. Towards our results, we consider interactive coding schemes when noiseless feedback is present; these produce resilient boolean formulas via a Karchmer-Wigderson relation. We develop a coding scheme that resists up to a fraction 1/5 of corrupted transmissions in each direction of the interactive channel. We further show that such a level of noise is maximal for coding schemes with sub-exponential blowup in communication. Our coding scheme takes a surprising inspiration from Blockchain technology.
  • 关键词:Circuit Complexity; Noise-Resilient Circuits; Interactive Coding; Coding Theory; Karchmer-Wigderson Games
国家哲学社会科学文献中心版权所有