首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Counting Basic-Irreducible Factors Mod p^k in Deterministic Poly-Time and p-Adic Applications
  • 本地全文:下载
  • 作者:Ashish Dwivedi ; Rajat Mittal ; Nitin Saxena
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2019
  • 卷号:137
  • 页码:1-29
  • DOI:10.4230/LIPIcs.CCC.2019.15
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Finding an irreducible factor, of a polynomial f(x) modulo a prime p, is not known to be in deterministic polynomial time. Though there is such a classical algorithm that counts the number of irreducible factors of f mod p. We can ask the same question modulo prime-powers p^k. The irreducible factors of f mod p^k blow up exponentially in number; making it hard to describe them. Can we count those irreducible factors mod p^k that remain irreducible mod p? These are called basic-irreducible. A simple example is in f=x^2+px mod p^2; it has p many basic-irreducible factors. Also note that, x^2+p mod p^2 is irreducible but not basic-irreducible! We give an algorithm to count the number of basic-irreducible factors of f mod p^k in deterministic poly(deg(f),k log p)-time. This solves the open questions posed in (Cheng et al, ANTS'18 & Kopp et al, Math.Comp.'19). In particular, we are counting roots mod p^k; which gives the first deterministic poly-time algorithm to compute Igusa zeta function of f. Also, our algorithm efficiently partitions the set of all basic-irreducible factors (possibly exponential) into merely deg(f)-many disjoint sets, using a compact tree data structure and split ideals.
  • 关键词:deterministic; root; counting; modulo; prime-power; tree; basic irreducible; unramified
国家哲学社会科学文献中心版权所有