首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Average-Case Quantum Advantage with Shallow Circuits
  • 本地全文:下载
  • 作者:Fran{\c{c}}ois Le Gall
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2019
  • 卷号:137
  • 页码:1-20
  • DOI:10.4230/LIPIcs.CCC.2019.21
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Recently Bravyi, Gosset and König (Science 2018) proved an unconditional separation between the computational powers of small-depth quantum and classical circuits for a relation. In this paper we show a similar separation in the average-case setting that gives stronger evidence of the superiority of small-depth quantum computation: we construct a computational task that can be solved on all inputs by a quantum circuit of constant depth with bounded-fanin gates (a "shallow" quantum circuit) and show that any classical circuit with bounded-fanin gates solving this problem on a non-negligible fraction of the inputs must have logarithmic depth. Our results are obtained by introducing a technique to create quantum states exhibiting global quantum correlations from any graph, via a construction that we call the extended graph. Similar results have been very recently (and independently) obtained by Coudron, Stark and Vidick (arXiv:1810.04233}), and Bene Watts, Kothari, Schaeffer and Tal (STOC 2019).
  • 关键词:Quantum computing; circuit complexity; constant-depth circuits
国家哲学社会科学文献中心版权所有