首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Imperfect Gaps in Gap-ETH and PCPs
  • 本地全文:下载
  • 作者:Mitali Bafna ; Nikhil Vyas
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2019
  • 卷号:137
  • 页码:1-19
  • DOI:10.4230/LIPIcs.CCC.2019.32
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We study the role of perfect completeness in probabilistically checkable proof systems (PCPs) and give a way to transform a PCP with imperfect completeness to one with perfect completeness, when the initial gap is a constant. We show that PCP_{c,s}[r,q] subseteq PCP_{1,s'}[r+O(1),q+O(r)] for c-s=Omega(1) which in turn implies that one can convert imperfect completeness to perfect in linear-sized PCPs for NP with a O(log n) additive loss in the query complexity q. We show our result by constructing a "robust circuit" using threshold gates. These results are a gap amplification procedure for PCPs, (when completeness is not 1) analogous to questions studied in parallel repetition [Anup Rao, 2011] and pseudorandomness [David Gillman, 1998] and might be of independent interest. We also investigate the time-complexity of approximating perfectly satisfiable instances of 3SAT versus those with imperfect completeness. We show that the Gap-ETH conjecture without perfect completeness is equivalent to Gap-ETH with perfect completeness, i.e. MAX 3SAT(1-epsilon,1-delta), delta > epsilon has 2^{o(n)} algorithms if and only if MAX 3SAT(1,1-delta) has 2^{o(n)} algorithms. We also relate the time complexities of these two problems in a more fine-grained way to show that T_2(n) <= T_1(n(log log n)^{O(1)}), where T_1(n),T_2(n) denote the randomized time-complexity of approximating MAX 3SAT with perfect and imperfect completeness respectively.
  • 关键词:PCP; Gap-ETH; Hardness of Approximation
国家哲学社会科学文献中心版权所有