首页    期刊浏览 2024年10月06日 星期日
登录注册

文章基本信息

  • 标题:Fine-Grained Reductions and Quantum Speedups for Dynamic Programming
  • 本地全文:下载
  • 作者:Amir Abboud
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2019
  • 卷号:132
  • 页码:1-13
  • DOI:10.4230/LIPIcs.ICALP.2019.8
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:This paper points at a connection between certain (classical) fine-grained reductions and the question: Do quantum algorithms offer an advantage for problems whose (classical) best solution is via dynamic programming? A remarkable recent result of Ambainis et al. [SODA 2019] indicates that the answer is positive for some fundamental problems such as Set-Cover and Travelling Salesman. They design a quantum O^*(1.728^n) time algorithm whereas the dynamic programming O^*(2^n) time algorithms are conjectured to be classically optimal. In this paper, fine-grained reductions are extracted from their algorithms giving the first lower bounds for problems in P that are based on the intriguing Set-Cover Conjecture (SeCoCo) of Cygan et al. [CCC 2010]. In particular, the SeCoCo implies: - a super-linear Omega(n^{1.08}) lower bound for 3-SUM on n integers, - an Omega(n^{k/(c_k)-epsilon}) lower bound for k-SUM on n integers and k-Clique on n-node graphs, for any integer k >= 3, where c_k <= log_2{k}+1.4427. While far from being tight, these lower bounds are significantly stronger than what is known to follow from the Strong Exponential Time Hypothesis (SETH); the well-known n^{Omega(k)} ETH-based lower bounds for k-Clique and k-SUM are vacuous when k is constant. Going in the opposite direction, this paper observes that some "sequential" problems with previously known fine-grained reductions to a "parallelizable" core also enjoy quantum speedups over their classical dynamic programming solutions. Examples include RNA Folding and Least-Weight Subsequence.
  • 关键词:Fine-Grained Complexity; Set-Cover; 3-SUM; k-Clique; k-SUM; Dynamic Programming; Quantum Algorithms
国家哲学社会科学文献中心版权所有