首页    期刊浏览 2024年12月18日 星期三
登录注册

文章基本信息

  • 标题:Estimating the Frequency of a Clustered Signal
  • 本地全文:下载
  • 作者:Xue Chen ; Eric Price
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2019
  • 卷号:132
  • 页码:1-13
  • DOI:10.4230/LIPIcs.ICALP.2019.36
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We consider the problem of locating a signal whose frequencies are "off grid" and clustered in a narrow band. Given noisy sample access to a function g(t) with Fourier spectrum in a narrow range [f_0 - Delta, f_0 + Delta], how accurately is it possible to identify f_0? We present generic conditions on g that allow for efficient, accurate estimates of the frequency. We then show bounds on these conditions for k-Fourier-sparse signals that imply recovery of f_0 to within Delta + O~(k^3) from samples on [-1, 1]. This improves upon the best previous bound of O(Delta + O~(k^5))^{1.5}. We also show that no algorithm can do better than Delta + O~(k^2). In the process we provide a new O~(k^3) bound on the ratio between the maximum and average value of continuous k-Fourier-sparse signals, which has independent application.
  • 关键词:sublinear algorithms; Fourier transform
国家哲学社会科学文献中心版权所有