首页    期刊浏览 2024年09月18日 星期三
登录注册

文章基本信息

  • 标题:Scheduling to Approximate Minimization Objectives on Identical Machines
  • 本地全文:下载
  • 作者:Benjamin Moseley
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2019
  • 卷号:132
  • 页码:1-14
  • DOI:10.4230/LIPIcs.ICALP.2019.86
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:This paper considers scheduling on identical machines. The scheduling objective considered in this paper generalizes most scheduling minimization problems. In the problem, there are n jobs and each job j is associated with a monotonically increasing function g_j. The goal is to design a schedule that minimizes sum_{j in [n]} g_{j}(C_j) where C_j is the completion time of job j in the schedule. An O(1)-approximation is known for the single machine case. On multiple machines, this paper shows that if the scheduler is required to be either non-migratory or non-preemptive then any algorithm has an unbounded approximation ratio. Using preemption and migration, this paper gives a O(log log nP)-approximation on multiple machines, the first result on multiple machines. These results imply the first non-trivial positive results for several special cases of the problem considered, such as throughput minimization and tardiness. Natural linear programs known for the problem have a poor integrality gap. The results are obtained by strengthening a natural linear program for the problem with a set of covering inequalities we call job cover inequalities. This linear program is rounded to an integral solution by building on quasi-uniform sampling and rounding techniques.
  • 关键词:Scheduling; LP rounding; Approximation Algorithms
国家哲学社会科学文献中心版权所有