首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Efficient Algorithms for Geometric Partial Matching
  • 本地全文:下载
  • 作者:Pankaj K. Agarwal ; Hsien-Chih Chang ; Allen Xiao
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2019
  • 卷号:129
  • 页码:1-14
  • DOI:10.4230/LIPIcs.SoCG.2019.6
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Let A and B be two point sets in the plane of sizes r and n respectively (assume r <= n), and let k be a parameter. A matching between A and B is a family of pairs in A x B so that any point of A cup B appears in at most one pair. Given two positive integers p and q, we define the cost of matching M to be c(M) = sum_{(a, b) in M} a-b _p^q where * _p is the L_p-norm. The geometric partial matching problem asks to find the minimum-cost size-k matching between A and B. We present efficient algorithms for geometric partial matching problem that work for any powers of L_p-norm matching objective: An exact algorithm that runs in O((n + k^2)polylog n) time, and a (1 + epsilon)-approximation algorithm that runs in O((n + k sqrt{k})polylog n * log epsilon^{-1}) time. Both algorithms are based on the primal-dual flow augmentation scheme; the main improvements involve using dynamic data structures to achieve efficient flow augmentations. With similar techniques, we give an exact algorithm for the planar transportation problem running in O(min{n^2, rn^{3/2}}polylog n) time.
  • 关键词:partial matching; transportation; optimal transport; minimum-cost flow; bichromatic closest pair
国家哲学社会科学文献中心版权所有