首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Circumscribing Polygons and Polygonizations for Disjoint Line Segments
  • 本地全文:下载
  • 作者:Hugo A. Akitaya ; Matias Korman ; Mikhail Rudoy
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2019
  • 卷号:129
  • 页码:1-17
  • DOI:10.4230/LIPIcs.SoCG.2019.9
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Given a planar straight-line graph G=(V,E) in R^2, a circumscribing polygon of G is a simple polygon P whose vertex set is V, and every edge in E is either an edge or an internal diagonal of P. A circumscribing polygon is a polygonization for G if every edge in E is an edge of P. We prove that every arrangement of n disjoint line segments in the plane has a subset of size Omega(sqrt{n}) that admits a circumscribing polygon, which is the first improvement on this bound in 20 years. We explore relations between circumscribing polygons and other problems in combinatorial geometry, and generalizations to R^3. We show that it is NP-complete to decide whether a given graph G admits a circumscribing polygon, even if G is 2-regular. Settling a 30-year old conjecture by Rappaport, we also show that it is NP-complete to determine whether a geometric matching admits a polygonization.
  • 关键词:circumscribing polygon; Hamiltonicity; extremal combinatorics
国家哲学社会科学文献中心版权所有