首页    期刊浏览 2025年06月16日 星期一
登录注册

文章基本信息

  • 标题:When Convexity Helps Collapsing Complexes
  • 本地全文:下载
  • 作者:Dominique Attali ; Andr Lieutier ; David Salinas
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2019
  • 卷号:129
  • 页码:1-15
  • DOI:10.4230/LIPIcs.SoCG.2019.11
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:This paper illustrates how convexity hypotheses help collapsing simplicial complexes. We first consider a collection of compact convex sets and show that the nerve of the collection is collapsible whenever the union of sets in the collection is convex. We apply this result to prove that the Delaunay complex of a finite point set is collapsible. We then consider a convex domain defined as the convex hull of a finite point set. We show that if the point set samples sufficiently densely the domain, then both the Cech complex and the Rips complex of the point set are collapsible for a well-chosen scale parameter. A key ingredient in our proofs consists in building a filtration by sweeping space with a growing sphere whose center has been fixed and studying events occurring through the filtration. Since the filtration mimics the sublevel sets of a Morse function with a single critical point, we anticipate this work to lay the foundations for a non-smooth, discrete Morse Theory.
  • 关键词:collapsibility; convexity; collection of compact convex sets; nerve; filtration; Delaunay complex; Cech complex; Rips complex
国家哲学社会科学文献中心版权所有