首页    期刊浏览 2025年02月19日 星期三
登录注册

文章基本信息

  • 标题:Almost Tight Lower Bounds for Hard Cutting Problems in Embedded Graphs
  • 本地全文:下载
  • 作者:Arnaud de Mesmay
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2019
  • 卷号:129
  • 页码:1-16
  • DOI:10.4230/LIPIcs.SoCG.2019.27
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We prove essentially tight lower bounds, conditionally to the Exponential Time Hypothesis, for two fundamental but seemingly very different cutting problems on surface-embedded graphs: the Shortest Cut Graph problem and the Multiway Cut problem. A cut graph of a graph G embedded on a surface S is a subgraph of G whose removal from S leaves a disk. We consider the problem of deciding whether an unweighted graph embedded on a surface of genus g has a cut graph of length at most a given value. We prove a time lower bound for this problem of n^{Omega(g/log g)} conditionally to ETH. In other words, the first n^{O(g)}-time algorithm by Erickson and Har-Peled [SoCG 2002, Discr. Comput. Geom. 2004] is essentially optimal. We also prove that the problem is W[1]-hard when parameterized by the genus, answering a 17-year old question of these authors. A multiway cut of an undirected graph G with t distinguished vertices, called terminals, is a set of edges whose removal disconnects all pairs of terminals. We consider the problem of deciding whether an unweighted graph G has a multiway cut of weight at most a given value. We prove a time lower bound for this problem of n^{Omega(sqrt{gt + g^2}/log(gt))}, conditionally to ETH, for any choice of the genus g >=0 of the graph and the number of terminals t >=4. In other words, the algorithm by the second author [Algorithmica 2017] (for the more general multicut problem) is essentially optimal; this extends the lower bound by the third author [ICALP 2012] (for the planar case). Reductions to planar problems usually involve a grid-like structure. The main novel idea for our results is to understand what structures instead of grids are needed if we want to exploit optimally a certain value g of the genus.
  • 关键词:Cut graph; Multiway cut; Surface; Lower bound; Parameterized Complexity; Exponential Time Hypothesis
国家哲学社会科学文献中心版权所有