首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Dual Circumference and Collinear Sets
  • 本地全文:下载
  • 作者:Vida Dujmovic ; Pat Morin
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2019
  • 卷号:129
  • 页码:1-17
  • DOI:10.4230/LIPIcs.SoCG.2019.29
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We show that, if an n-vertex triangulation T of maximum degree Delta has a dual that contains a cycle of length l, then T has a non-crossing straight-line drawing in which some set, called a collinear set, of Omega(l/Delta^4) vertices lie on a line. Using the current lower bounds on the length of longest cycles in 3-regular 3-connected graphs, this implies that every n-vertex planar graph of maximum degree Delta has a collinear set of size Omega(n^{0.8}/Delta^4). Very recently, Dujmovic et al. (SODA 2019) showed that, if S is a collinear set in a triangulation T then, for any point set X subset R^2 with X = S , T has a non-crossing straight-line drawing in which the vertices of S are drawn on the points in X. Because of this, collinear sets have numerous applications in graph drawing and related areas.
  • 关键词:Planar graphs; collinear sets; untangling; column planarity; universal point subsets; partial simultaneous geometric drawings
国家哲学社会科学文献中心版权所有