首页    期刊浏览 2025年03月09日 星期日
登录注册

文章基本信息

  • 标题:Topological Data Analysis in Information Space
  • 本地全文:下载
  • 作者:Herbert Edelsbrunner ; Ziga Virk ; Hubert Wagner
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2019
  • 卷号:129
  • 页码:1-14
  • DOI:10.4230/LIPIcs.SoCG.2019.31
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Various kinds of data are routinely represented as discrete probability distributions. Examples include text documents summarized by histograms of word occurrences and images represented as histograms of oriented gradients. Viewing a discrete probability distribution as a point in the standard simplex of the appropriate dimension, we can understand collections of such objects in geometric and topological terms. Importantly, instead of using the standard Euclidean distance, we look into dissimilarity measures with information-theoretic justification, and we develop the theory needed for applying topological data analysis in this setting. In doing so, we emphasize constructions that enable the usage of existing computational topology software in this context.
  • 关键词:Computational topology; persistent homology; information theory; entropy
国家哲学社会科学文献中心版权所有