首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Chunk Reduction for Multi-Parameter Persistent Homology
  • 本地全文:下载
  • 作者:Ulderico Fugacci ; Michael Kerber
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2019
  • 卷号:129
  • 页码:1-14
  • DOI:10.4230/LIPIcs.SoCG.2019.37
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:The extension of persistent homology to multi-parameter setups is an algorithmic challenge. Since most computation tasks scale badly with the size of the input complex, an important pre-processing step consists of simplifying the input while maintaining the homological information. We present an algorithm that drastically reduces the size of an input. Our approach is an extension of the chunk algorithm for persistent homology (Bauer et al., Topological Methods in Data Analysis and Visualization III, 2014). We show that our construction produces the smallest multi-filtered chain complex among all the complexes quasi-isomorphic to the input, improving on the guarantees of previous work in the context of discrete Morse theory. Our algorithm also offers an immediate parallelization scheme in shared memory. Already its sequential version compares favorably with existing simplification schemes, as we show by experimental evaluation.
  • 关键词:Multi-parameter persistent homology; Matrix reduction; Chain complexes
国家哲学社会科学文献中心版权所有