首页    期刊浏览 2024年07月08日 星期一
登录注册

文章基本信息

  • 标题:Preprocessing Ambiguous Imprecise Points
  • 本地全文:下载
  • 作者:Ivor van der Hoog ; Irina Kostitsyna ; Maarten L{"o}ffler
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2019
  • 卷号:129
  • 页码:1-16
  • DOI:10.4230/LIPIcs.SoCG.2019.42
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Let R = {R_1, R_2, ..., R_n} be a set of regions and let X = {x_1, x_2, ..., x_n} be an (unknown) point set with x_i in R_i. Region R_i represents the uncertainty region of x_i. We consider the following question: how fast can we establish order if we are allowed to preprocess the regions in R? The preprocessing model of uncertainty uses two consecutive phases: a preprocessing phase which has access only to R followed by a reconstruction phase during which a desired structure on X is computed. Recent results in this model parametrize the reconstruction time by the ply of R, which is the maximum overlap between the regions in R. We introduce the ambiguity A(R) as a more fine-grained measure of the degree of overlap in R. We show how to preprocess a set of d-dimensional disks in O(n log n) time such that we can sort X (if d=1) and reconstruct a quadtree on X (if d >= 1 but constant) in O(A(R)) time. If A(R) is sub-linear, then reporting the result dominates the running time of the reconstruction phase. However, we can still return a suitable data structure representing the result in O(A(R)) time. In one dimension, {R} is a set of intervals and the ambiguity is linked to interval entropy, which in turn relates to the well-studied problem of sorting under partial information. The number of comparisons necessary to find the linear order underlying a poset P is lower-bounded by the graph entropy of P. We show that if P is an interval order, then the ambiguity provides a constant-factor approximation of the graph entropy. This gives a lower bound of Omega(A(R)) in all dimensions for the reconstruction phase (sorting or any proximity structure), independent of any preprocessing; hence our result is tight. Finally, our results imply that one can approximate the entropy of interval graphs in O(n log n) time, improving the O(n^{2.5}) bound by Cardinal et al.
  • 关键词:preprocessing; imprecise points; entropy; sorting; proximity structures
国家哲学社会科学文献中心版权所有