首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Exact Computation of the Matching Distance on 2-Parameter Persistence Modules
  • 本地全文:下载
  • 作者:Michael Kerber ; Michael Lesnick ; Steve Oudot
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2019
  • 卷号:129
  • 页码:1-15
  • DOI:10.4230/LIPIcs.SoCG.2019.46
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:The matching distance is a pseudometric on multi-parameter persistence modules, defined in terms of the weighted bottleneck distance on the restriction of the modules to affine lines. It is known that this distance is stable in a reasonable sense, and can be efficiently approximated, which makes it a promising tool for practical applications. In this work, we show that in the 2-parameter setting, the matching distance can be computed exactly in polynomial time. Our approach subdivides the space of affine lines into regions, via a line arrangement. In each region, the matching distance restricts to a simple analytic function, whose maximum is easily computed. As a byproduct, our analysis establishes that the matching distance is a rational number, if the bigrades of the input modules are rational.
  • 关键词:Topological Data Analysis; Multi-Parameter Persistence; Line arrangements
国家哲学社会科学文献中心版权所有