首页    期刊浏览 2025年02月20日 星期四
登录注册

文章基本信息

  • 标题:On Weak epsilon-Nets and the Radon Number
  • 本地全文:下载
  • 作者:Shay Moran ; Amir Yehudayoff
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2019
  • 卷号:129
  • 页码:1-14
  • DOI:10.4230/LIPIcs.SoCG.2019.51
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We show that the Radon number characterizes the existence of weak nets in separable convexity spaces (an abstraction of the Euclidean notion of convexity). The construction of weak nets when the Radon number is finite is based on Helly's property and on metric properties of VC classes. The lower bound on the size of weak nets when the Radon number is large relies on the chromatic number of the Kneser graph. As an application, we prove an amplification result for weak epsilon-nets.
  • 关键词:abstract convexity; weak epsilon nets; Radon number; VC dimension; Haussler packing lemma; Kneser graphs
国家哲学社会科学文献中心版权所有