首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:DTM-Based Filtrations
  • 本地全文:下载
  • 作者:Hirokazu Anai ; Frdric Chazal ; Marc Glisse
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2019
  • 卷号:129
  • 页码:1-15
  • DOI:10.4230/LIPIcs.SoCG.2019.58
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Despite strong stability properties, the persistent homology of filtrations classically used in Topological Data Analysis, such as, e.g. the Cech or Vietoris-Rips filtrations, are very sensitive to the presence of outliers in the data from which they are computed. In this paper, we introduce and study a new family of filtrations, the DTM-filtrations, built on top of point clouds in the Euclidean space which are more robust to noise and outliers. The approach adopted in this work relies on the notion of distance-to-measure functions and extends some previous work on the approximation of such functions.
  • 关键词:Topological Data Analysis; Persistent homology
国家哲学社会科学文献中心版权所有