首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Packing Geometric Objects with Optimal Worst-Case Density (Multimedia Exposition)
  • 本地全文:下载
  • 作者:Aaron T. Becker ; S{'a}ndor P. Fekete ; Phillip Keldenich
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2019
  • 卷号:129
  • 页码:1-6
  • DOI:10.4230/LIPIcs.SoCG.2019.63
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We motivate and visualize problems and methods for packing a set of objects into a given container, in particular a set of {different-size} circles or squares into a square or circular container. Questions of this type have attracted a considerable amount of attention and are known to be notoriously hard. We focus on a particularly simple criterion for deciding whether a set can be packed: comparing the total area A of all objects to the area C of the container. The critical packing density delta^* is the largest value A/C for which any set of area A can be packed into a container of area C. We describe algorithms that establish the critical density of squares in a square (delta^*=0.5), of circles in a square (delta^*=0.5390 ...), regular octagons in a square (delta^*=0.5685 ...), and circles in a circle (delta^*=0.5).
  • 关键词:Packing; complexity; bounds; packing density
国家哲学社会科学文献中心版权所有