首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Comparison of fractional order techniques for measles dynamics
  • 本地全文:下载
  • 作者:Amna Bashir ; Muhammad Mushtaq ; Zain Ul Abadin Zafar
  • 期刊名称:Advances in Difference Equations
  • 印刷版ISSN:1687-1839
  • 电子版ISSN:1687-1847
  • 出版年度:2019
  • 卷号:2019
  • 期号:1
  • 页码:1-27
  • DOI:10.1186/s13662-019-2272-4
  • 出版社:Hindawi Publishing Corporation
  • 摘要:A mathematical model which is non-linear in nature with non-integer order ϕ, 0 < ϕ ≤ 1 $0 < \phi \leq 1$ is presented for exploring the SIRV model with the rate of vaccination μ 1 $\mu _)$ and rate of treatment μ 2 $\mu _,$ to describe a measles model. Both the disease free F 0 $\mathcal{F}_($ and the endemic F ∗ $\mathcal{F}^{*}$ points have been calculated. The stability has also been argued for using the theorem of stability of non-integer order differential equations. R 0 $\mathcal{R} _($ , the basic reproduction number exhibits an imperative role in the stability of the model. The disease free equilibrium point F 0 $\mathcal{F}_($ is an attractor when R 0 < 1 $\mathcal{R}_( 1$ , F 0 $\mathcal{F}_($ is unstable, the endemic equilibrium F ∗ $\mathcal{F}^{*}$ subsists and it is an attractor. Numerical simulations of considerable model are also supported to study the behavior of the system.
  • 关键词:Measles model;Stability;Generalized Euler Method;Grunwald Letnikov Method;Binomial Coefficients;Fractional Derivatives;Adams;Bashforth;Moulton Method;Piece wise Continuous Argument (PWCA)
国家哲学社会科学文献中心版权所有