首页    期刊浏览 2025年02月20日 星期四
登录注册

文章基本信息

  • 标题:Asymptotic behavior of mild solutions for a class of abstract nonlinear difference equations of convolution type
  • 本地全文:下载
  • 作者:Valentin Keyantuo ; Carlos Lizama ; Silvia Rueda
  • 期刊名称:Advances in Difference Equations
  • 印刷版ISSN:1687-1839
  • 电子版ISSN:1687-1847
  • 出版年度:2019
  • 卷号:2019
  • 期号:1
  • 页码:1-29
  • DOI:10.1186/s13662-019-2189-y
  • 出版社:Hindawi Publishing Corporation
  • 摘要:We prove the existence and uniqueness of a weighted pseudo asymptotically mild solution to the following class of abstract semilinear difference equations: u ( n + 1 ) = A ∑ k = − ∞ n a ( n − k ) u ( k + 1 ) + ∑ k = − ∞ n b ( n − k ) f ( k , u ( k ) ) , n ∈ Z , $$ u(n+1)= A \sum_{k=-\infty }^{n} a(n-k)u(k+1)+ \sum _{k=-\infty }^{n} b(n-k)f\bigl(k,u(k)\bigr),\quad n\in \mathbb{Z}, $$ where A is the generator of a resolvent sequence { S ( n ) } n ∈ N 0 $\{S(n)\}_{n\in \mathbb{N}_(}$ of bounded and linear operators defined in a Banach space X, the sequences a , b $a, b$ are complex-valued, and f ∈ l 1 ( Z × X , X ) $f\in l^)( \mathbb{Z}\times X, X)$ .
  • 关键词:39A14;45D05;35B40;47D06;Weighted pseudo asymptotically mild solutions;Abstract difference equations;Resolvent sequences of operators
国家哲学社会科学文献中心版权所有