首页    期刊浏览 2024年11月25日 星期一
登录注册

文章基本信息

  • 标题:人流における学習型誘導技術のデータ同化
  • 本地全文:下载
  • 作者:松林 達史 ; 清武 寛 ; 幸島 匡宏
  • 期刊名称:人工知能学会論文誌
  • 印刷版ISSN:1346-0714
  • 电子版ISSN:1346-8030
  • 出版年度:2019
  • 卷号:34
  • 期号:5
  • 页码:1-11
  • DOI:10.1527/tjsai.wd-F
  • 出版社:The Japanese Society for Artificial Intelligence
  • 摘要:Forming security plans for crowd navigation is essential to ensure safety management at large-scale events. The Multi Agent Simulator (MAS) is widely used for preparing security plans that will guide responses to sudden and unexpected accidents at large events. For forming security plans, it is necessary that we simulate crowd behaviors which reflects the real world situations. However, the crowd behavior situations require the OD information (departure time, place of Origin, and Destination) of each agent. Moreover, from the viewpoint of protection of personal information, it is difficult to observe the whole trajectories of all pedestrians around the event area. Therefore, the OD information should be estimated from the several observed data which is counted the number of passed people at the fixed points.In this paper, we propose a new method for estimating the OD information which has following two features. Firstly, by using Bayesian optimization (BO) which is widely used to find optimal hyper parameters in the machine learning fields, the OD information are estimated efficiently. Secondly, by dividing the time window and considering the time delay due to observation points that are separated, we propose a more accurate objective function.We experiment the proposed method to the projection-mapping event (YOYOGI CANDLE 2020), and evaluate the reproduction of the people flow on MAS. We also show an example of the processing for making a guidance plan to reduce crowd congestion by using MAS.
  • 关键词:multi agent simulation;bayesian optimization
国家哲学社会科学文献中心版权所有