期刊名称:International Journal of Intelligent Systems and Applications
印刷版ISSN:2074-904X
电子版ISSN:2074-9058
出版年度:2019
卷号:11
期号:8
页码:56-67
DOI:10.5815/ijisa.2019.08.06
出版社:MECS Publisher
摘要:This paper presents an investigation of the convolutional neural network (CNN) with Word2Vec word embedding technique for text classification. Performance of CNN is tested on seven benchmark datasets with a different number of classes, training and testing samples. Test classification results obtained from proposed CNN are compared with results of CNN models and other classifiers reported in the literature. Investigation shows that CNN models are better suitable for text classification than other techniques. The main objective of the paper is to identify best-fitted parameter values batch size, epochs, activation function, dropout rates and feature maps values. Results of proposed CNN are better than many other classification techniques reported in the literature for Yelp Review Polarity dataset and Amazon Review Polarity dataset. For all the seven datasets, accuracy obtained by proposed CNN is close to the best-known results from the literature.