首页    期刊浏览 2025年07月08日 星期二
登录注册

文章基本信息

  • 标题:Multimodal Biometric System based Face-Iris Feature Level Fusion
  • 本地全文:下载
  • 作者:Muthana H. Hamd ; Marwa Y. Mohammed
  • 期刊名称:International Journal of Modern Education and Computer Science
  • 印刷版ISSN:2075-0161
  • 电子版ISSN:2075-017X
  • 出版年度:2019
  • 卷号:11
  • 期号:5
  • 页码:1-9
  • DOI:10.5815/ijmecs.2019.05.01
  • 出版社:MECS Publisher
  • 摘要:This paper proposed feature level fusion technique to develop a robust multimodal human identification system. The humane face-iris traits are fused together to improve system accuracy in recognizing 40 persons taken from ORL and CASIA-V1 database. Also, low quality iris images of MMU-1 database are considered in this proposal for further test of recognition accuracy. The face-iris features are extracted using four comparative methods. The texture analysis methods like Gray Level Co-occurrence Matrix (GLCM) and Local Binary Pattern (LBP) are both gained 100% accuracy rate, while the Principle Component Analysis (PCA) and Fourier Descriptors (FDs) methods achieved 97.5% accuracy rate only.
  • 关键词:Face-iris biometric;Fourier descriptors;Fusion;GLCM;LBP;PCA
国家哲学社会科学文献中心版权所有