首页    期刊浏览 2025年02月17日 星期一
登录注册

文章基本信息

  • 标题:Efficient Code for Second Order Analysis of Events on a Linear Network
  • 本地全文:下载
  • 作者:Suman Rakshit ; Adrian Baddeley ; Gopalan Nair
  • 期刊名称:Journal of Statistical Software
  • 印刷版ISSN:1548-7660
  • 电子版ISSN:1548-7660
  • 出版年度:2019
  • 卷号:90
  • 期号:1
  • 页码:1-37
  • DOI:10.18637/jss.v090.i01
  • 出版社:University of California, Los Angeles
  • 摘要:We describe efficient algorithms and open-source code for the second-order statistical analysis of point events on a linear network. Typical summary statistics are adaptations of Ripley's K-function and the pair correlation function to the case of a linear network, with distance measured by the shortest path in the network. Simple implementations consume substantial time and memory. For an efficient implementation, the data structure representing the network must be economical in its use of memory, but must also enable rapid searches to be made. We have developed such an efficient implementation in C with an R interface written as an extension to the R package spatstat. The algorithms handle realistic large networks, as we demonstrate using a database of all road accidents recorded in Western Australia.
  • 关键词:geometric correction; K-function; pair correlation function; point process; R; shortestpath distance; spatstat.
  • 其他关键词:geometric correction;K-function;pair correlation function;point process;R;shortest-path distance;spatstat
国家哲学社会科学文献中心版权所有