首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Mean and Variance Modeling of Under-Dispersed and Over-Dispersed Grouped Binary Data
  • 本地全文:下载
  • 作者:David M. Smith ; Malcolm J. Faddy
  • 期刊名称:Journal of Statistical Software
  • 印刷版ISSN:1548-7660
  • 电子版ISSN:1548-7660
  • 出版年度:2019
  • 卷号:90
  • 期号:1
  • 页码:1-20
  • DOI:10.18637/jss.v090.i08
  • 出版社:University of California, Los Angeles
  • 摘要:This article describes the R package BinaryEPPM and its use in determining maximum likelihood estimates of the parameters of extended Poisson process models for grouped binary data. These provide a Poisson process family of flexible models that can handle unlimited under-dispersion but limited over-dispersion in such data, with the binomial distribution being a special case. Within BinaryEPPM, models with the mean and variance related to covariates are constructed to match a generalized linear model formulation. Combining such under-dispersed models with standard over-dispersed models such as the beta binomial distribution provides a very general form of residual distribution for modeling grouped binary data. Use of the package is illustrated by application to several data-sets.
  • 关键词:binomial distribution; covariate effects; dispersion; Poisson process; precision of estimates.
  • 其他关键词:binomial distribution;covariate effects;dispersion;Poisson process;precision of estimates
国家哲学社会科学文献中心版权所有